If cos theta + sin theta=✓2 cos theta shw that cos theta-sin theta=✓2 sin theta
Answers
Solution :
Given :
cosθ + sinθ = √2cosθ
Squaring on both sides
⇒ (cosθ + sinθ)² = (√2cosθ)²
⇒ cos²θ + sin²θ + 2cosθ.sinθ = 2cos²θ
[ Because (a + b)² = a² + b² + 2ab ]
⇒ 1 + 2cosθ.sinθ = 2cos²θ
[ Because cos²θ + sin²θ = 1 ]
⇒ 2cosθ.sinθ = 2cos²θ - 1
Now, let us assume cosθ - sinθ = x
cosθ - sinθ = x
Squaring on both sides
⇒ (cosθ - sinθ)² = x²
⇒ cos²θ + sin²θ - 2cosθ.sinθ = x²
[ Because (a - b)² = a² + b² - 2ab ]
⇒ cos²θ + sin²θ - 2cosθ.sinθ = x²
⇒ cos²θ + sin²θ - (2cos²θ - 1) = x²
[ Proved, 2cosθ.sinθ = 2cos²θ - 1 ]
⇒ cos²θ + sin²θ - 2cos²θ + 1 = x²
⇒ - cos²θ + sin²θ + 1 = x²
Rearranging the terms
⇒ sin²θ + 1 - cos²θ = x²
[ Because 1 - cos²θ = sin²θ ]
⇒ sin²θ + sin²θ = x²
⇒ 2sin²θ = x²
Taking square root on both sides
⇒ √( 2sin²θ) = √x²
⇒ √2sinθ = x
⇒ x = √2sinθ
i.e cosθ - sinθ = √2sinθ
Hence shown.
Given:----
- cosA + sinA = √2cosA
To prove:----
- cosA - sinA = √2 sinA
Formula used:----
- (a+b)² =a²+ab+b²
- sin²A+cos²A=1
- a²+b²-2ab = (a-b)²
cos A +sin A = √2cos A
squaring on both sides we get
(cos A + sin A)² = (√2cos A)²
using (a+b)² =a²+ab+b² in LHS now we get,
a = cos A ,, b = sin A
cos²A + sin²A + 2sinAcosA = 2cos²A
now we know that sin²A+cos²A=1
or, sin²A = 1-cos²A
cos²A = 1-sin²A
putting these values in LHS now ,,
→ (1 - sin²A) + (1 - cos²A) + 2 sinAcosA = 2cos²A
Adding like terms and sin²A+cos²A -2sinA cosA -2cos²A on both sides we get,,
→ 2 - 2 cos²A = cos²A + sin²A - 2 sinAcosA
taking 2 as common in LHS and using (a²+b²-2ab = (a-b)² in RHS we get,
→ 2(1 - cos²A)= (cos A - sin A)²
putting (1-cos²A) = sin²A and square root both sides now,
→ (cosA - sinA) = √[2 sin²A]
→ (cosA-sinA) = √2 sinA
Hence , Proved .........
(Hope it helps you)