Math, asked by biswassubho59, 3 months ago

if cos theta + sin theta =√2 cos theta then prove that cos that - sin theta = √2 sin theta ​

Answers

Answered by Qᴜɪɴɴ
33

Given:-

  •  \cos \theta  +  \sin\theta  =  \sqrt{2}  \cos\theta

━━━━━━━━━━━━━━━━

Need to prove:-

  •  \cos \theta  -  \sin\theta  =  \sqrt{2}   \sin \theta

━━━━━━━━━━━━━━━━

Solution:-

 \cos\theta  +  \sin \theta   =  \sqrt{2}  \cos\theta

Squaring on both sides we get,

\implies {( \cos \theta  +  \sin \theta  ) }^{2}  =  {( \sqrt{2} \cos \theta )  }^{2}

\implies { { \cos }^{2} \theta  }  + { \sin }^{2}   \theta  + 2 \sin \theta   \cos\theta  = 2 { \cos }^{2}  \theta

\implies 2 { \cos }^{2}  \theta  -  {cos}^{2}  \theta  -  {sin}^{2}  \theta  = 2sin \theta cos  \theta

\implies {cos}^{2}   \theta  -  {sin}^{2}  \theta = 2sin \theta \: cos \theta

\implies (cos \theta + sin \theta)(cos \theta  -  sin \theta) = 2sin \theta \: cos \theta

We know,

 \cos \theta  +  \sin\theta  =  \sqrt{2}  \cos\theta

Therefore,

\implies ( \sqrt{2}  \cos\theta)(cos \theta  -  sin \theta) = 2sin \theta \: cos \theta

\implies (cos \theta  -  sin \theta) = 2sin \theta \: cos \theta \div  \sqrt{2}cos \theta

\red{\boxed{\bold{\large{\implies cos \theta - sin \theta =  \sqrt{2}sin \theta}}}} (Hence proved!)

━━━━━━━━━━━━━━━━

Knowledge cell:-

Trigonometric Identities:-

  • \sin^2\theta+\cos^2\theta=1

  • \sin^2\theta= 1-\cos^2\theta

  • \cos^2\theta=1-\sin^2\theta

  • 1+\cot^2\theta={cosec}^2 \theta

  • {cosec}^2 \theta-\cot^2\theta =1

  • {cosec}^2 \, \theta= 1+\cot^2\theta

  • \sec^2\theta=1+\tan^2\theta

  • \sec^2\theta-\tan^2\theta=1

  •  \tan^2\theta=\sec^2\theta-1

biswassubho59: Than you
biswassubho59: Thank you
Answered by IIUrShonaII
39

Corrected Question :-

 \sf \: if \: cosθ  + sinθ =  \sqrt{2} cosθ  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\\sf then \: prove \: that  \:   \sf \: cosθ - sinθ =   \sqrt{2} sinθ

━━━━━━━━━━━━━━━━

Given :-

  •  \sf{cosθ + sinθ =   \sqrt{2}cosθ  }

To prove :-

  •  \sf \: cosθ - sinθ =   \sqrt{2} sinθ

Solution :-

 \sf{we \: know \: that} \\  {\sf \: cosθ + sinθ =  \sqrt{2} cosθ}

 \sf \: squaring \: both \: sides

\sf \: {(cosθ + sinθ)}^{2}  =  { (\sqrt{2}cosθ) }^{2}

 \sf \:  {cos}^{2} θ +  {sin}^{2}θ + 2sinθcosθ = 2 {cos}^{2} θ

 \sf2 {cos}^{2}θ -  {cos}^{2} θ -  {sin}^{2} θ  = 2sinθcosθ

 \sf {cos}^{2} θ -  {sin}^{2} θ = 2sinθcosθ

 \sf(cosθ + sinθ)(cosθ - sinθ) = 2sinθcosθ

 \sf \: since \: cosθ + sinθ =  \sqrt{2} cosθ

 \sf(\sqrt{2} cosθ ) (cosθ - sinθ)  = 2cosθsinθ

 \sf \: cosθ - sinθ =  \frac{2cosθsinθ}{ \sqrt{2}cosθ }

 \sf {\red{ \star{cosθ - sinθ =  \sqrt{2}sin θ  \star}}}

━━━━━━━━━━━━━━━━

 {\red{ \sf{ hence \: proved}}}

{ \rm{ \color{cyan}{❤||ur  \: shona||❤}}}

Similar questions