English, asked by help00, 1 month ago

if cos theta + sin theta =√2 cos theta then prove that cos that - sin theta = √2 sin theta ​

Answers

Answered by Anonymous
198

\huge{\underline{\mathcal{\red{A}\green{n}\pink{s}\orange{w}\blue{e}\pink{R:-}}}}

\rule{250px}{.4ex}

\large\underline\bold\red{Given:-}

 \cos \theta  +  \sin\theta  =  \sqrt{2}  \cos\theta

\large\underline\bold\red{To\:Prove:-}

 \cos \theta  -  \sin\theta  =  \sqrt{2}   \sin \theta

\large\underline\bold\red{Solution:-}

 \cos\theta  +  \sin \theta   =  \sqrt{2}  \cos\theta

Squaring on both sides we get,

\implies {( \cos \theta  +  \sin \theta  ) }^{2}  =  {( \sqrt{2} \cos \theta )  }^{2}

\implies { { \cos }^{2} \theta  }  + { \sin }^{2}   \theta  + 2 \sin \theta   \cos\theta  = 2 { \cos }^{2}  \theta

\implies 2 { \cos }^{2}  \theta  -  {cos}^{2}  \theta  -  {sin}^{2}  \theta  = 2sin \theta cos  \theta

\implies {cos}^{2}   \theta  -  {sin}^{2}  \theta = 2sin \theta \: cos \theta

\implies (cos \theta + sin \theta)(cos \theta  -  sin \theta) = 2sin \theta \: cos \theta

We know that ,

 \cos \theta  +  \sin\theta  =  \sqrt{2}  \cos\theta

Therefore,

\implies ( \sqrt{2}  \cos\theta)(cos \theta  -  sin \theta) = 2sin \theta \: cos \theta

\implies (cos \theta  -  sin \theta) = 2sin \theta \: cos \theta \div  \sqrt{2}cos \theta

{\boxed{\bold{\small{\implies cos \theta - sin \theta =  \sqrt{2}sin \theta}}}}

Hence, Proved

\rule{250px}{.4ex}

\large\underline\bold\red{Trignometric\:identities:-}

ㅤㅤㅤ\boxed{\begin{minipage}{4cm}\\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

\rule{250px}{.3ex}

Answered by llitznakhrebaazll
0

Answer:

hope it helps you if it did plz mark me as brainliest

Explanation:

^_^

Attachments:
Similar questions