if cos theta+sin theta=√2 sin theta, find cos theta- sin theta.
Answers
Answered by
2
Answer:
Step-by-step explanation:
BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST
Attachments:
Answered by
4
Answer:
Let theta = A
cos A + sin A = √2 sin A
cos A = sin A (√2-1)
tan A = √2+1 ---------(I)
cos A - sin A = sin A ( cot A -1)
= sin A (√2-1-1) = (√2-2) sin A. -------(2)
From (I)
sin A/cos A = √2+1
sin A/ √(1-sin²A) = √2+1
Whole squaring both sides ,
sin² A/1-sin²A = (√2+1)
sin²A = (1-sin²A)(√2+1)
sin²A = √2 +1 -√2sin²A - sin ² A
sin²A (2+√2) = (√2+1)
sin²A = √2+1/2+√2
sin A = √(√2+1)/(2+√2)
From (2),
cos A -sin A = (√2-2){√(√2+1)/(2+√2)} ----- ( Answer).
Similar questions