Math, asked by Priyanshusrivastava, 1 year ago

If cos theta +sin theta=√2cos theta ,show that (cos theta-sin theta)=√2sin theta

Answers

Answered by Anonymous
16
hope this helps you ☺☺
Attachments:

Priyanshusrivastava: this process is given in book can you solve it from another processs
Anonymous: okay I'll
Priyanshusrivastava: Thnkuuu bro...
Priyanshusrivastava: Try fast
Anonymous: done
Priyanshusrivastava: bro niche se second step me kha se root 2 break kar diye ho
Anonymous: rationalise
Anonymous: rationalisation aata h n
Anonymous: ?.
Priyanshusrivastava: huuu aata h bhai ..
Answered by JeanaShupp
7

Given: \cos\theta+\sin\theta=\sqrt{2}\cos\theta

Squaring on both the sides, we get

(\cos\theta+\sin\theta)^2=(\sqrt{2}\cos\theta)^2\\\\\Rightarrow\ \cos^2\theta+\sin^2\theta+2\cos\theta\sin\theta=2\cos^2\theta\\\\\Rightarrow\ 1+2\cos\theta\sin\theta=2\cos^2\theta\\\\\Rightarrow\ 2\cos\theta\sin\theta=2\cos^2\theta-1

Consider,

(\cos\theta-\sin\theta)^2=\cos^2\theta+\sin^2\theta-2\cos\theta\sin\theta\\\\=1-(2\cos^2\theta-1)\\\\=2-2cos^2\theta=2-2(1-\sin^2\theta)\\\\=2-2+2\sin^2\theta\\\\=2\sin^2\theta\\\\\Rightarrow\ (\cos\theta-\sin\theta)^2=2\sin^2\theta\\\\\text{Taking square root on both sides, we get}\\\\\Rightarrow\ \cos\theta-\sin\theta=\sqrt{2}\sin\theta

Hence, proved.

Similar questions