if cos Theta-sin theta =√2sin theta,prove that cos theta+sin theta=√2cosTheta
means space hope my answer helps
Answers
Answered by
8
Let theta be A
CosA - SinA = √2SinA
CosA = √2SinA + SinA
CosA = SinA (√2 + 1)
CosA / (√2 + 1) = SinA
On rationalizing we get
CosA(√2 - 1) / 2 - 1 = SinA
√2CosA - CosA = SinA
√2CosA = SinA + CosA
Hence Proved.
CosA - SinA = √2SinA
CosA = √2SinA + SinA
CosA = SinA (√2 + 1)
CosA / (√2 + 1) = SinA
On rationalizing we get
CosA(√2 - 1) / 2 - 1 = SinA
√2CosA - CosA = SinA
√2CosA = SinA + CosA
Hence Proved.
Answered by
1
sA+sinA=√2cosA=>cos2A+sin2A+2cosAsinA=2cos2A=>−cos2A+2cosAsinA−sin2a=−2sin2A=>−(cosA−sinA)2=−2sin2A=>cosA−sinA=√2sinA
Similar questions
cos x + sin x = root2 cos x
squaring on both side, we get......
cos2x + sin2x + 2cosxsinx = 2cos2x
2sinxcosx = 2cos2x - cos2x - sin2x
2sinxcosx = cos2x - sin2x
2sinxcosx = (cosx+sinx) (cosx - sinx)
2sinxcosx = (root2 cosx) (cosx - sinx)
2sinxcosx/root2 cosx = cosx - sinx
root2 sinx = cosx - sinx