Math, asked by airisdutta01, 6 hours ago

If cos theta - sin theta / cos theta - sin theta = 1- √3 / 1+√3 , find theta ?​

Answers

Answered by mathdude500
5

Appropriate Question

 \sf \: If  \: \dfrac{cos\theta - sin\theta}{cos\theta + sin\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }, \: find \: \theta

 \red{\large\underline{\sf{Solution-}}}

Given Trigonometric equation is

 \rm :\longmapsto\: \dfrac{cos\theta - sin\theta}{cos\theta + sin\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

\rm :\longmapsto\:(cos\theta - sin\theta)(1 +  \sqrt{3}) = (cos\theta + sin\theta)(1 -  \sqrt{3})

\rm :\longmapsto\:\cancel{cos\theta}  -  sin\theta + \sqrt{3}cos\theta -\cancel{\sqrt{3}sin\theta} = \cancel{cos\theta} + sin\theta  -  \sqrt{3}cos\theta - \cancel{\sqrt{3}sin\theta}

\rm :\longmapsto\: - sin\theta +  \sqrt{3}cos\theta = sin\theta -  \sqrt{3}cos\theta

\rm :\longmapsto\: 2\sqrt{3}cos\theta = 2sin\theta

\rm :\longmapsto\: \sqrt{3}cos\theta = sin\theta

\rm :\longmapsto\:\dfrac{sin\theta}{cos\theta} =  \sqrt{3}

\rm :\longmapsto\:tan\theta =  \sqrt{3}

\rm :\longmapsto\:tan\theta =  tan60 \degree

\rm \implies\:\boxed{\tt{ \theta =  60 \degree }}

Alternative Method

 \rm :\longmapsto\: \dfrac{cos\theta - sin\theta}{cos\theta + sin\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

 \rm :\longmapsto\: \dfrac{cos\theta\bigg[1 - \dfrac{sin\theta}{cos\theta} \bigg]}{cos\theta\bigg[1 + \dfrac{sin\theta}{cos\theta} \bigg]}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

\rm :\longmapsto\:\dfrac{1 - tan\theta}{1 + tan\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

So, on comparing, we get

\rm :\longmapsto\:tan\theta =  \sqrt{3}

\rm :\longmapsto\:tan\theta =  tan60 \degree

\rm \implies\:\boxed{\tt{ \theta =  60 \degree }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Learn

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answered by EmperorSoul
13

Appropriate Question

 \sf \: If  \: \dfrac{cos\theta - sin\theta}{cos\theta + sin\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }, \: find \: \theta

 \red{\large\underline{\sf{Solution-}}}

Given Trigonometric equation is

 \rm :\longmapsto\: \dfrac{cos\theta - sin\theta}{cos\theta + sin\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

\rm :\longmapsto\:(cos\theta - sin\theta)(1 +  \sqrt{3}) = (cos\theta + sin\theta)(1 -  \sqrt{3})

\rm :\longmapsto\:\cancel{cos\theta}  -  sin\theta + \sqrt{3}cos\theta -\cancel{\sqrt{3}sin\theta} = \cancel{cos\theta} + sin\theta  -  \sqrt{3}cos\theta - \cancel{\sqrt{3}sin\theta}

\rm :\longmapsto\: - sin\theta +  \sqrt{3}cos\theta = sin\theta -  \sqrt{3}cos\theta

\rm :\longmapsto\: 2\sqrt{3}cos\theta = 2sin\theta

\rm :\longmapsto\: \sqrt{3}cos\theta = sin\theta

\rm :\longmapsto\:\dfrac{sin\theta}{cos\theta} =  \sqrt{3}

\rm :\longmapsto\:tan\theta =  \sqrt{3}

\rm :\longmapsto\:tan\theta =  tan60 \degree

\rm \implies\:\boxed{\tt{ \theta =  60 \degree }}

Alternative Method

 \rm :\longmapsto\: \dfrac{cos\theta - sin\theta}{cos\theta + sin\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

 \rm :\longmapsto\: \dfrac{cos\theta\bigg[1 - \dfrac{sin\theta}{cos\theta} \bigg]}{cos\theta\bigg[1 + \dfrac{sin\theta}{cos\theta} \bigg]}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

\rm :\longmapsto\:\dfrac{1 - tan\theta}{1 + tan\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

So, on comparing, we get

\rm :\longmapsto\:tan\theta =  \sqrt{3}

\rm :\longmapsto\:tan\theta =  tan60 \degree

\rm \implies\:\boxed{\tt{ \theta =  60 \degree }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Learn

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions