Math, asked by phani8318, 11 months ago

if cos theta + sin theta is equal to root 2 cos theta then prove that cos theta minus sin theta equal to root 2 Sin Theta ​

Answers

Answered by aman0012
1

Answer:

sin

θ

+

cos

θ

=

2

cos

θ

Explanation:

Here,

sin

θ

cos

θ

=

2

sin

θ

sin

θ

2

sin

θ

=

cos

θ

sin

θ

(

1

2

)

=

cos

θ

sin

θ

[

(

1

2

)

(

1

+

2

1

+

2

)

]

=

cos

θ

sin

θ

[

1

2

1

+

2

)

=

cos

θ

sin

θ

(

1

)

=

(

1

+

2

)

cos

θ

sin

θ

=

cos

θ

+

2

cos

θ

sin

θ

cos

θ

=

2

cos

θ

sin

θ

+

cos

θ

=

2

cos

θ

Answered by Anonymous
3

Step-by-step explanation:

We have,

→ cos θ + sin θ = √2cos θ .

[ Squaring both side, we get ] .

⇒ ( cos θ + sin θ )² = 2cos²θ .

⇒ cos²θ + sin²θ + 2cosθsinθ = 2cos² .

⇒ sin²θ + 2cosθsinθ = 2cos²θ - cos²θ .

⇒ sin²θ + 2cosθsinθ = cos²θ .

⇒ cos²θ - 2cosθsinθ = sin²θ .

[ Adding sin²θ both side, we get ] .

⇒ cos²θ - 2cosθsinθ + sin²θ = sin²θ + sin²θ .

⇒ ( cos θ - sin θ )² = 2sin²θ .

⇒ cos θ - sin θ = √( 2sin²θ ) .

∴ cos θ - sin θ = √2sin θ ......

Hence, it is proved .

Similar questions