Math, asked by bisu9025, 1 year ago

if cos theta + sin theta is equal to root 2 cos theta then prove that cos theta minus sin theta is equal 1

Answers

Answered by izmazainab
1

Answer:

i will be using A instead of theta

we have ,

cosA+sinA=√2cosA

squaring both the sides

=>(cosA+sinA)²=2cos²A

=>cos²A+sin²A+2sinAcosA=2cos²A

=>cos²A-2cos²A+2sinAcosA= -sin²A

=> -cos²A+2sinAcosA= -sin²A

=> cos²A-2sinAcosA=sin²A

adding sin²A on both the sides

=> cos²A+sin²A-2sinAcosA=2sin²A

=> (cosA-sinA)²=2sin²A

=> cosA-sinA=√2sinA

Step-by-step explanation:

Answered by Anonymous
1

Step-by-step explanation:

We have,

→ cos θ + sin θ = √2cos θ .

[ Squaring both side, we get ] .

⇒ ( cos θ + sin θ )² = 2cos²θ .

⇒ cos²θ + sin²θ + 2cosθsinθ = 2cos² .

⇒ sin²θ + 2cosθsinθ = 2cos²θ - cos²θ .

⇒ sin²θ + 2cosθsinθ = cos²θ .

⇒ cos²θ - 2cosθsinθ = sin²θ .

[ Adding sin²θ both side, we get ] .

⇒ cos²θ - 2cosθsinθ + sin²θ = sin²θ + sin²θ .

⇒ ( cos θ - sin θ )² = 2sin²θ .

⇒ cos θ - sin θ = √( 2sin²θ ) .

∴ cos θ - sin θ = √2sin θ . .......

Hence, it is proved .

Similar questions