if cos theta + Sin theta =m and sec theta + Coses theta =n
prove n(m²-1)= 2m
Answers
Answered by
2
Answer:
Given that,
sin theta + cos theta= m, sec theta + cosec theta = n.
Consider LHS
n(m^2 - 1)n(m
2
−1)
(sec\theta + cosec\theta)[(cos\theta + sin\theta)^2 - 1](secθ+cosecθ)[(cosθ+sinθ)
2
−1]
(sec\theta + cosec\theta)[cos^2 \theta + sin^2 \theta + 2sin\theta cos\theta - 1](secθ+cosecθ)[cos
2
θ+sin
2
θ+2sinθcosθ−1]
(sec\theta + cosec\theta)[2sin\theta cos\theta] since {cos^2 \theta + sin^2 \theta = 1}(secθ+cosecθ)[2sinθcosθ]since cos
2
θ+sin
2
θ=1
sec\theta . 2sin\theta cos\theta + cosec\theta . 2sin\theta cos\thetasecθ.2sinθcosθ+cosecθ.2sinθcosθ
2sin\theta + 2 cos\theta2sinθ+2cosθ
2[sin\theta + cos\theta]2[sinθ+cosθ]
= 2m
Step-by-step explanation:
hope it helps you
please give me likes to support my answers....
Similar questions