If cos theta sin theta minus sin theta cos theta show by the induction that n equal to bracket cos n theta sin n theta minus sin theta cos sin theta
Answers
Answered by
0
Hlw mate
To Prove
8cos2(θ)+4cos4(θ)+cos6(θ)=48cos2(θ)+4cos4(θ)+cos6(θ)=4
Given that
sin(θ)+sin2(θ)+sin3(θ)=1sin(θ)+sin2(θ)+sin3(θ)=1
Therefore
sin(θ)+sin3(θ)=1−sin2(θ)sin(θ)+sin3(θ)=1−sin2(θ)
sin(θ)+sin3(θ)=cos2(θ)sin(θ)+sin3(θ)=cos2(θ)
sin(θ)[1+1−cos2(θ)]=cos2(θ)sin(θ)[1+1−cos2(θ)]=cos2(θ)
sin(θ)[2−cos2(θ)]=cos2(θ)sin(θ)[2−cos2(θ)]=cos2(θ)
sin(θ)=cos2(θ)/[2−cos2(θ)]sin(θ)=cos2(θ)/[2−cos2(θ)]
(1−cos2θ)−−−−−−−−−√=cos2(θ)/[2−cos2(θ)](1−cos2θ)=cos2(θ)/[2−cos2(θ)]
Squaring both sides we get
(1−cos2θ)=cos4(θ)/[4+cos4θ−4cos2(θ)](1−cos2θ)=cos4(θ)/[4+cos4θ−4cos2(θ)]
4−4cos2θ+cos4θ−cos6θ−4cos2θ+4cos4θ=cos44−4cos2θ+cos4θ−cos6θ−4cos2θ+4cos4θ=cos4
4−8cos2θ−cos6θ+4cos4θ=04−8cos2θ−cos6θ+4cos4θ=0
cos6θ−4cos4θ+8cos2θ=4
Hope it helpful
To Prove
8cos2(θ)+4cos4(θ)+cos6(θ)=48cos2(θ)+4cos4(θ)+cos6(θ)=4
Given that
sin(θ)+sin2(θ)+sin3(θ)=1sin(θ)+sin2(θ)+sin3(θ)=1
Therefore
sin(θ)+sin3(θ)=1−sin2(θ)sin(θ)+sin3(θ)=1−sin2(θ)
sin(θ)+sin3(θ)=cos2(θ)sin(θ)+sin3(θ)=cos2(θ)
sin(θ)[1+1−cos2(θ)]=cos2(θ)sin(θ)[1+1−cos2(θ)]=cos2(θ)
sin(θ)[2−cos2(θ)]=cos2(θ)sin(θ)[2−cos2(θ)]=cos2(θ)
sin(θ)=cos2(θ)/[2−cos2(θ)]sin(θ)=cos2(θ)/[2−cos2(θ)]
(1−cos2θ)−−−−−−−−−√=cos2(θ)/[2−cos2(θ)](1−cos2θ)=cos2(θ)/[2−cos2(θ)]
Squaring both sides we get
(1−cos2θ)=cos4(θ)/[4+cos4θ−4cos2(θ)](1−cos2θ)=cos4(θ)/[4+cos4θ−4cos2(θ)]
4−4cos2θ+cos4θ−cos6θ−4cos2θ+4cos4θ=cos44−4cos2θ+cos4θ−cos6θ−4cos2θ+4cos4θ=cos4
4−8cos2θ−cos6θ+4cos4θ=04−8cos2θ−cos6θ+4cos4θ=0
cos6θ−4cos4θ+8cos2θ=4
Hope it helpful
Similar questions