if cos theta +sin theta =root 2 cos theta prove that cos theta -sin theta =root 2 sin theta
Answers
Answer:-
Given:-
cos θ + sin θ = √2 cos θ
Dividing both sides by cos θ we get,
⟹ (cos θ + sin θ) / cos θ = √2 × cos θ/cos θ
⟹ (cos θ/cos θ) + (sin θ/cos θ) = √2
using sin θ/cos θ = tan θ we get,
⟹ 1 + tan θ = √2
⟹ tan θ = (√2 - 1) / 1
We know,
tan θ = Opposite side/Adjacent side
So,
- Opposite side = √2 - 1
- Adjacent side = 1
By using Pythagoras Theorem,
⟹ (Hypotenuse)² = (Opposite side)² + (Adjacent side)²
⟹ (Hypotenuse)² = (√2 - 1)² + (1)²
- (a - b)² = a² + b² - 2ab
⟹ (Hypotenuse)² = (√2)² + (1)² - 2(√2)(1) + 1
⟹ Hypotenuse = √ [ 2 + 1 - 2√2 + 1 ]
⟹ Hypotenuse =
Now,
We have to prove that:
cos θ - sin θ = √2 sin θ
We know,
sin θ = Opposite side/Hypotenuse
cos θ = Adjacent side/Hypotenuse
Putting the values we get,
Hence Proved.
- Cosθ + sinθ=√2cosθ
- Cosθ - sinθ=√2sinθ
We need to know :
---------------------------------
Given,
- Cosθ + sinθ=√2cosθ
Squaring on both sides,
And,
From (1) :
Therefore,
Hence proved !
-------------------------------
Know More :-
→ Sinθ = opposite/hypotenuse
→ Cosθ = adjacent/hypotenuse
→ Tanθ = opposite/adjacent
→ Tan θ =sinθ /cosθ
→ 1/sinθ =cosecθ
→ 1/cosθ =sec θ
→ cosec²θ - cot²θ=1
→ tan²θ+1=sec²θ
-------------------------------
HOPE IT HELPS !