if cos theta+sin theta=root 2 cos theta show that cis theta-Sin theta=root 2 sin theta
Answers
Answered by
1
Answer:
Step-by-step explanation:
Let θ = x
cos x + sin x = √2 cos x
squaring on both side, we get......
cos2x + sin2x + 2cosxsinx = 2cos2x
2sinxcosx = 2cos2x - cos2x - sin2x
2sinxcosx = cos2x - sin2x
2sinxcosx = (cosx+sinx) (cosx - sinx)
2sinxcosx = (root2 cosx) (cosx - sinx)
2sinxcosx/root2 cosx = cosx - sinx
√2 sinx = cosx - sinx
Answered by
0
Answer:
If cosθ+sinθ=2cosθ, show that cosθ−sinθ=2sinθ.
Share
Study later
ANSWER
Given,
cosθ+sinθ=2cosθ
squaring on both the sides, we get,
cos2θ+sin2θ+2sinθcosθ=2cos2θ
cos2θ−sin2θ=2cosθsinθ
(cosθ+sinθ)(cosθ−sinθ)=2cosθsinθ
2cosθ(cosθ−sinθ)=2cosθsinθ [ Given cosθ+sinθ=2cosθ]
∴cosθ−sinθ=2sinθ [henceproved]
Similar questions
World Languages,
3 months ago
CBSE BOARD X,
3 months ago
English,
6 months ago
Math,
6 months ago
Math,
11 months ago