If cos theta - sin theta = (root 2)(sin theta) then prove that cos theta + sin theta = (root 2)(cos theta).
sksr1729p7d69x:
i got another method
Answers
Answered by
61
Theta is written as A .
Given, cosA - sinA = √2 sinA
Divide by sinA on both sides.
( cosA - sinA ) ÷ sinA = √2 sinA ÷ sinA
cosA / sinA - sinA / sinA = √2
cot A - 1 = √2
cotA = √2 + 1
1 / tanA = √2 + 1
tanA = 1 / { √2 + 1 }
tanA = 1 / ( √2 + 1 ) × ( √2 - 1 ) / ( √2 - 1 )
tanA = ( √2 - 1 ) / ( 2 - 1 )
tanA = √2 - 1
tan A + 1 = √2
sinA / cosA + 1 = √2
( sinA + cosA ) / cosA = √2
sinA + cosA = √2 cosA
Given, cosA - sinA = √2 sinA
Divide by sinA on both sides.
( cosA - sinA ) ÷ sinA = √2 sinA ÷ sinA
cosA / sinA - sinA / sinA = √2
cot A - 1 = √2
cotA = √2 + 1
1 / tanA = √2 + 1
tanA = 1 / { √2 + 1 }
tanA = 1 / ( √2 + 1 ) × ( √2 - 1 ) / ( √2 - 1 )
tanA = ( √2 - 1 ) / ( 2 - 1 )
tanA = √2 - 1
tan A + 1 = √2
sinA / cosA + 1 = √2
( sinA + cosA ) / cosA = √2
sinA + cosA = √2 cosA
Answered by
72
Similar questions