Math, asked by anathapa1329, 9 months ago

If cos theta-sintheta=root2sinthetathen prove that costheta+sintheta=root2costheta

Answers

Answered by rajat2269
0

Answer:

Hope it will help you.

Please make it brainliest.

Attachments:
Answered by harendrachoubay
1

\cos \theta+\sin \theta=\sqrt{2}\cos \theta, proved.

Step-by-step explanation:

We have,

\cos \theta-\sin \theta=\sqrt{2}\sin \theta               ...... (1)

Prove that, \cos \theta+\sin \theta=\sqrt{2}\cos \theta

Let \cos \theta+\sin \theta=x                  ........ (2)

Squaring and adding equations (1) and (2), we get

(\cos \theta-\sin \theta)^2+(\cos \theta+\sin \theta)^2=(\sqrt{2}\sin \theta)^2+x^2

\cos^2 \theta+\sin^2 \theta+2\cos \theta\sin \theta+\cos^2 \theta+\sin^2 \theta-2\cos \theta\sin \theta=2\sin^2 \theta+x^2

\cos^2 \theta+\sin^2 \theta+\cos^2 \theta+\sin^2 \theta=2\sin^2 \theta+x^2

2(\cos^2 \theta+\sin^2 \theta)=2\sin^2 \theta+x^2

Using the trigonometric identity,

\cos^2 \theta+\sin^2 \theta=1

2(1)=2\sin^2 \theta+x^2

2=2\sin^2 \theta+x^2

x^2 =2-2\sin^2 \theta=2(1-\sin^2 \theta)

Using the trigonometric identity,

\cos^2 \theta+\sin^2 \theta=1

⇒  x^2 =2\cos^2 \theta=(\sqrt{2} \cos \theta)^2

x=\sqrt{2} \cos \theta, proved.

Hence, \cos \theta+\sin \theta=\sqrt{2}\cos \theta, proved.

Similar questions