Math, asked by krishnajha2005, 3 months ago

If cos theta - tan theta = root 2 sin theta then prove that cos theta + sin theta = 2 root cos theta

Answers

Answered by Itzcupkae
2

Step-by-step explanation:

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\mathrm{Question}}}

If cos theta - tan theta = root 2 sin theta then prove that cos theta + sin theta = 2 root cos theta

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\mathrm{Answer}}}

\cos(0)  +  \sin(0)  =  \sqrt{2}  \cos(0)

∴ squaring on the both sides, We get⇒

∴⇛  \cos {}^{2} 0 +  \sin {}^{2} 0 +2 \sin0 \cos0 {}^{}  = 2 \cos {}^{2} 0

⇛\cos {}^{2} 0 -  \sin {}^{2} 0 = 2 \cos0 \:  \sin0

∴⇛( \cos  0  +   \sin 0 = \cos  0   -    \sin 0 )  = 2 \cos0 \sin0

∴⇛\sqrt{2}  \cos \: ( \cos0   -  \sin0) = 2 \cos0 \sin0

[Given  \cos0 +  \sin0 =  \sqrt{2}  \cos0]

\huge{\underline{\mathrm{Hence\: Proved}}}

\sf\blue{ \cos0 -  \sin0 =  \sqrt{2}  \sin0}

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\mathrm{Note}}}

[ Please refer to the attachment for the big and stepped ]

[ upper shortly I haved mentioned ]

⠀━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:

Itzcupkae: refer to the attachment
Itzcupkae: which I haved mentioned
krishnajha2005: U copied it from net I saw that pic somewhere else u copy cat
Itzcupkae: hehe
Itzcupkae: xD oppss sorry
krishnajha2005: Wah
krishnajha2005: So jao bhai tum
Itzcupkae: but if I wrote that it's began to problem for u
Itzcupkae: because I can't get lactix text there
krishnajha2005: Ok leave it
Answered by Flaunt
155

Question

If cosθ -sinθ=√2sinθ

then prove that cos θ +sin θ =√2 cos θ

\sf\huge\bold{Solution}

\sf \longmapsto \: cos \theta - sin \theta =  \sqrt{2} sin \theta

Squaring both sides:

(cosθ -sinθ)²=(√2sinθ)²

\sf \longmapsto \: {cos}^{2}  \theta +  {sin}^{2}  \theta - 2sin \theta \: cos \theta \:  = 2 {sin}^{2}  \theta

\sf \longmapsto1 - 2sin \theta \: cos \theta = 2 {sin}^{2}  \theta

\sf \longmapsto2sin \theta \: cos \theta = 1 - 2 {sin}^{2}  \theta

Taking L.H.S

\sf \longmapsto {(sin \theta + cos \theta)}^{2}  =  {sin}^{2}  \theta +  {cos}^{2}  \theta + 2sin \theta \: cos \theta

\sf \longmapsto1 + 1 - 2 {sin}^{2}  \theta

\sf \longmapsto2(1 -  {sin}^{2}  \theta) = 2 {cos}^{2}  \theta

 \sf{(sin \theta + cos \theta)}^{2}  = 2 {cos}^{2}  \theta

  \sf \: sin \theta + cos \theta =  \sqrt{2} cos \theta(RHS)

Similar questions