Math, asked by sunitasharma9029, 5 months ago

If cos thetha =1/2 then find the value of 2 Sec thetha/1+tan² thetha​

Answers

Answered by ILLUSTRIOUS27
1

Given

 \bf \mapsto \: cos \theta =  \dfrac{1}{2}

To Find

 \bf \mapsto \: value \: of \:  \:  \:  \dfrac{2sec \theta}{1 +  {tan}^{2} \theta }

Concept used

 \bf  \begin{cases}  \bf  {sec}^{2}  \theta = 1 +  {tan}^{2}   \theta \:  \:  \:  \:  \boxed{1} \\  \\   \bf \: sec \theta =  \dfrac{1}{cos \theta}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{2}\end{cases}

Solution

We need to find the value of  \boxed{ \rm \:  \frac{2sec \theta}{1 +   {tan}^{2} \theta  }  }

So we directly simplify it

  \rm \:  \dfrac{2sec \theta}{1 +  {tan}^{2} \theta }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \: using  \: identity \boxed{1} \\  \\ \rm   \implies\dfrac{2sec \theta}{ {sec}^{2}  \theta}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \rm \:  \frac{2sec \theta}{sec \theta \times sec \theta}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \bf \: now \: cut \: sec \theta \\  \\  \implies \rm \:  \frac{2}{sec \theta} \implies 2cos \theta  \:  \:  \:  \:  \:  \underline{\bf \: using \boxed{ 2} }

We have the value of cos\theta

so we put in the formula easily

 \bf \: putting \: value \\  \\ 2 \times  \frac{1}{2}  \implies \: 1

 \underline{ \boxed{  \bf \huge\frac{2sec \theta}{1 +  {tan}^{2}  \theta } = 1 }}

It is the right way to solve this question fastly and easily

Similar questions