Math, asked by sambitsharma01, 7 months ago

If cos thetha = 3/5 , find the value of sin thetha-1/tan thetha / 2Tan thetha​

Answers

Answered by MaIeficent
4

Step-by-step explanation:

Diagram:-

Let x be the opposite side of the triangle

 \sf cos \theta =  \dfrac{3}{5}  =  \dfrac{Adjacent \: side}{Hypotenuse}

For right angled triangle.

Hypotenuse² = (Adjacent side)² + (Opposite side)²

\dashrightarrow  \sf {AC}^{2}  =  {AB}^{2}  +  {BC}^{2}

\dashrightarrow  \sf {AB}^{2}  =  {AC}^{2}  -  {BC}^{2}

\dashrightarrow  \sf {AB}^{2}  =  {5}^{2}  - {3}^{2}

\dashrightarrow  \sf {AB}^{2}  =  25 - 9

\dashrightarrow  \sf {AB}^{2}  =  16

\dashrightarrow  \sf AB=  \sqrt{16}

\dashrightarrow  \sf AB = 4

 \sf sin \theta =  \dfrac{AB}{AC}  =  \dfrac{4}{5}

 \sf tan\theta =  \dfrac{sin\theta}{cos\theta}  =  \dfrac{4}{3}

Now, the value of \sf  \dfrac{sin \theta -  \dfrac{1}{tan \theta} }{2tan \theta}

\sf   = \dfrac{ \dfrac{4}{5}  -  \dfrac{1}{ \frac{4}{3} } }{2 \times  \dfrac{4}{3} }

\sf   = \dfrac{ \dfrac{4}{5}  -   \dfrac{3}{4}}{  \dfrac{8}{3} }

\sf   = \dfrac{ \dfrac{16 - 15}{20}  }{  \dfrac{8}{3} }

\sf   = \dfrac{ \dfrac{1}{20}  }{  \dfrac{8}{3} }  =  \dfrac{1}{20} \times  \dfrac{3}{8}

\sf   = \dfrac{3}{160}

\:

 \underline{\boxed{  \sf \dashrightarrow\dfrac{sin \theta -  \dfrac{1}{tan \theta} }{2tan \theta} = \dfrac{3}{160}}}

Attachments:
Similar questions