Math, asked by lankaramanamurthy, 5 months ago

If cos thetha + sin thetha = √2 cos thetha, prove that cos thetha -sin thetha = +_ √2 sin thetha​

Answers

Answered by omy351863
0

Answer:

tan(theta)=coefficient of friction (u) tan(theta) = √3 ... Find theta for which sintheta = costheta, if 180° < 0 < 360 °(1) ...

Answered by BrainlyKingdom
1

\rm{\cos \theta+\sin \theta=\sqrt{2} \cos \theta}

  • Squaring On Both Sides of The Equation

\to\rm{(\cos \theta+\sin \theta)^2=(\sqrt{2} \cos \theta)^2}

  • Apply Algebraic Identity : \rm{(a+b)^2=a^2+b^2+2ab}

\to\rm{\cos^2 \theta+\sin^2 \theta+2\times \cos\theta\times \sin\theta=(\sqrt{2} \cos \theta)^2}

\to\rm{\cos^2 \theta+\sin^2 \theta+2\sin\theta\cos\theta=(\sqrt{2} \cos \theta)^2}

\to\rm{\cos^2 \theta+\sin^2 \theta+2\sin\theta\cos\theta=2 \cos^2 \theta}

  • Bring cos²θ and sin²θ to Left Sides of The Equation

\to\rm{2\sin\theta\cos\theta=2 \cos^2 \theta - \cos^2 \theta-\sin^2 \theta}

\to\rm{2\sin\theta\cos\theta=\cos^2 \theta-\sin^2 \theta}

  • Apply Difference of Two Products Rule : \rm{a^2-b^2=(a+b)(a-b)}

\to\rm{2\sin\theta\cos\theta=(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)}

  • We are already given With : \rm{\cos \theta+\sin \theta=\sqrt{2} \cos \theta}

\to\rm{2\sin\theta\cos\theta=\sqrt{2}\cos\theta(\cos \theta-\sin \theta)}

  • Dividing Both Side by \rm{\sqrt{2}\cos\theta}

\to\rm{\dfrac{2\sin\theta\cos\theta}{\sqrt{2}\cos\theta}=\dfrac{\sqrt{2}\cos\theta(\cos \theta-\sin \theta)}{\sqrt{2}\cos\theta}}

\to\rm{\dfrac{2\sin\theta}{\sqrt{2}}=\dfrac{\cos \theta-\sin \theta}{1}}

\to\rm{\dfrac{2\sin\theta}{\sqrt{2}}=\cos \theta-\sin \theta}

  • Switch Sides

\to\rm{\cos \theta-\sin \theta=\dfrac{2\sin\theta}{\sqrt{2}}}

  • We know a = √a × √a , So : \rm{2=\sqrt{2}\times\sqrt{2}}

\to\rm{\cos \theta-\sin \theta=\dfrac{\sqrt{2}\times\sqrt{2} \sin\theta}{\sqrt{2}}}

  • Cancelling √2 in Numerator and Denominator

\to\rm{\cos \theta-\sin \theta=\sqrt{2} \sin\theta}

Hence Proved !!!!!

Similar questions