Math, asked by kruthishreek13, 2 months ago

If cos thita =5/7 find the value of tan thita + cosec thita

Answers

Answered by Anonymous
14

Given :-

{cos\theta} = \dfrac{5}{7}

To find :-

{tan\theta + cosec\theta}

SOLUTION:-

As we know that ,

{cos\theta} = \dfrac{adjacent}{hypotenuse}

Since,

Adjacent side is 5

Hypotenuse is 7

As we also know that ,

Pythagoras theorem :-

(opp) {}^{2}  + (adj) {}^{2}  = (hyp) {}^{2}

From this we shall find opposite side

(opp) {}^{2}  + (5) {}^{2}  = (7) {}^{2}

(opp) {}^{2}  + 25 = 49

(opp) {}^{2}  = 49 - 25

(opp) {}^{2}  = 24

opp =  \sqrt{24}

So,

{tan\theta} = \dfrac{opposite}{adjacent}

{cosec\theta} = \dfrac{hypotenuse}{opposite}

{tan\theta} = \dfrac{ \sqrt{24} }{5}

{cosec\theta} =  \dfrac{7}{ \sqrt{24} }

{tan\theta+cosec\theta} = \dfrac{ \sqrt{24} }{5}  +  \dfrac{7}{ \sqrt{24}}

 =  \dfrac{ \sqrt{24} }{5}  +  \dfrac{7}{ \sqrt{24} }

 =  \dfrac{24 + 35}{5 \sqrt{24} }

 =  \dfrac{59}{5 \sqrt{24} }

 =  \dfrac{59}{10 \sqrt{6} }

Know more :-

Trigonometric Identities:-

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigonometric relations:-

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonometric ratios:-

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions