Math, asked by AkashMyadari, 1 year ago

if cos tita =0.6 show that 5 sin tita - 3 tan tita = 0​

Answers

Answered by ihrishi
11

Step-by-step explanation:

Given:

cos \theta \:  = 0.6 \\  \because \:  {sin}^{2} \theta \:  = 1 - {cos}^{2} \theta \\  = 1 - (0.6) \\  = 1 - 0.36 \\  {sin}^{2} \theta \: = 0.64 \\  \therefore \: {sin}\theta \:  =  \sqrt{0.64}  \\  \therefore \: {sin}\theta \:  = 0.8 \\ tan \theta \:  =  \frac{{sin}\theta }{{cos}\theta }  =  \frac{0.8}{0.6}  =  \frac{4}{3}  \\ now \\ 5{sin}\theta  - 3{tan}\theta  \\  = 5 \times 0.8 - 3 \times  \frac{4}{3}  \\  = 4 \:  \\ = 0 \\ thus \:  \\ 5{sin}\theta  - 3{tan}\theta  = 0 \\ hence \: proved. \\

Similar questions