Math, asked by omkar107, 1 year ago

If cos tita =5/13then find the value of tan tita

Answers

Answered by Anonymous
9
hey friend

here your answer

cos(  \alpha ) \:  =  \frac{5}{13}  \\  \\  \\ here \: we \: apply \: these \: formula \\  \\ 1 \:  +  {tan}^{2}( \alpha ) =  {sec}^{2} ( \alpha )......equation(1) \\  \\  sec \: ( \alpha ) =  \frac{13}{5}  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \because \: sec( \alpha ) \: is \: inverse \: function \: of \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: cos \: ( \alpha ) \\  \\   \\ sec( \alpha ) \: value \: will \: put \: in \: equation \: (1) \\  \\ 1 +  {tan}^{2} ( \alpha ) =  \frac{ {13}^{2} }{ {5}^{2} }  \\  \\ 1 +  {tan}^{2}(  \alpha ) =  \frac{169}{25}  \\  \\  {tan}^{2} ( \alpha ) =  \frac{169}{25}  - 1 \\  \\  {tan}^{2} ( \alpha ) \:  =  \frac{169 - 25}{25}  =  \frac{144}{25}  \\  \\ tan( \alpha ) \:  \:  =  \frac{ \sqrt{144} }{ \sqrt{25} }  =  \frac{12}{5 }  \\  \\  \frac{12}{5}  \:  \: is \: your \: answer \\  \\ hope \: it \: helps \: you
Similar questions