Math, asked by Anonymous, 1 year ago

if cos x=3/5 and cos y= -24/25 ,where 270 <x<360 and 180 < y< 270,find the value of (i) sin(x+y) (ii) cos (x-y) (iii).tan(x+y).


plz help me guys..


Answers

Answered by JinKazama1
16
^_^ TRIGONOMETRY •.^

Steps:
1) When
 \cos(x) = \frac{3}{5}
and.
 \frac{3\pi}{4} &lt; x &lt; 2\pi
then.
 \sin(x) = \frac{ - 4}{5 } \\ \tan(x) = \frac{ - 4}{3}

2) When
 \cos(y) = \frac{ - 24}{25}
and
 \pi&lt; y &lt; \frac{3\pi}{4}
then
 \sin(y) = \frac{ - 7}{25} \\ \tan(y) = \frac{7}{24}

3) Now to the question,

 \sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y) \\ = &gt; \frac{ - 4}{5} \times \frac{ - 24}{25} + \frac{3}{5} \times \frac{ - 7}{25} \\ = &gt; \frac{75}{125} = \frac{3}{5}

4)
 \cos(x - y) = \cos(x) \cos(y) + \sin(x) \sin(y) \\ = &gt; \frac{ 3}{5} \times \frac{ - 24}{25} + (\frac{ - 4}{5}) \times ( \frac{ - 7}{25} ) \\ = &gt; \frac{ - 44 }{125}
5)
 \tan(x + y) = \frac{ \tan(x) + \tan(y) }{1 - \tan(x) \tan(y) } \\ = &gt; \frac{ \frac{ - 4}{3} + \frac{7}{24} }{1 - ( \frac{ - 4}{3}) \times \frac{7}{24} } \\ = &gt; \frac{ - 75}{100} = \frac{ - 3}{4}
^_^ Hope, you Enjoyed reading ^.^
:D

Anonymous: thank u so mch
Similar questions