Math, asked by VedicLord, 2 months ago

If cos (x+a) cos (x-a)=1/2, then prove that
tan^2 x=(1-tan^2 a)/(1+3tan^2 a)​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \cos(x + \alpha )  \cos(x - \alpha )  =  \frac{1}{2}  \\

 \implies \{ \cos(x)  \cos(  \alpha )  -  \sin(x) \sin( \alpha )   \} \{ \cos(x) \cos(  \alpha )  +  \sin(x)  \sin( \alpha )   \}=  \frac{1}{2}  \\

 \implies \cos^{2} (x)  \cos ^{2} (  \alpha )  -  \sin ^{2} (x) \sin ^{2} ( \alpha ) =  \frac{1}{2}  \\

 \implies \cos^{2} (x)  \cos ^{2} (  \alpha )  -  \{1 -  \cos ^{2} (x) \} \{1 -  \cos^{2} ( \alpha ) \} =  \frac{1}{2}  \\

 \implies \cos^{2} (x)  \cos ^{2} (  \alpha )  -  \{1 -  \cos ^{2} (x) -  \cos^{2} ( \alpha )  +  \cos ^{2} (x) \cos^{2} ( \alpha )  \} =  \frac{1}{2}  \\

 \implies \cos^{2} (x)  \cos ^{2} (  \alpha )  - 1  +   \cos ^{2} (x)  +  \cos^{2} ( \alpha )   -   \cos ^{2} (x) \cos^{2} ( \alpha )  =  \frac{1}{2}  \\

 \implies   - 1  +   \cos ^{2} (x)  +  \cos^{2} ( \alpha )     =  \frac{1}{2}  \\

 \implies       \cos ^{2} (x)        =  \frac{1}{2}  + 1 - \cos^{2} ( \alpha ) \\

 \implies       \cos ^{2} (x)        =  \frac{3}{2}  - \cos^{2} ( \alpha ) \\

 \implies       \cos ^{2} (x)        =  \frac{3- 2\cos^{2} ( \alpha )}{2}   \\

 \implies       \sec^{2} (x)        =  \frac{2}{3- 2\cos^{2} ( \alpha )}  \\

 \implies       \sec^{2} (x)   - 1      =  \frac{2}{3- 2\cos^{2} ( \alpha )} - 1  \\

 \implies       \tan^{2} (x)         =  \frac{2 - 3 + 2 \cos ^{2} ( \alpha ) }{3- 2\cos^{2} ( \alpha )}  \\

 \implies       \tan^{2} (x)         =  \frac{ - 1 + 2 \cos ^{2} ( \alpha ) }{3- 2\cos^{2} ( \alpha )}  \\

 \implies       \tan^{2} (x)         =  \frac{ - ( \sin^{2} ( \alpha ) +  \cos ^{2} ( \alpha ))   + 2 \cos ^{2} ( \alpha ) }{3 ( \sin^{2} ( \alpha ) +  \cos ^{2} ( \alpha )) - 2\cos^{2} ( \alpha )}  \\

 \implies       \tan^{2} (x)         =  \frac{ -  \sin^{2} ( \alpha )  -   \cos ^{2} ( \alpha )   + 2 \cos ^{2} ( \alpha ) }{3 \sin^{2} ( \alpha ) +  3\cos ^{2} ( \alpha ) - 2\cos^{2} ( \alpha )}  \\

 \implies       \tan^{2} (x)         =  \frac{ -  \sin^{2} ( \alpha )   + \cos ^{2} ( \alpha ) }{3 \sin^{2} ( \alpha ) +  \cos ^{2} ( \alpha ) }  \\

 \implies       \tan^{2} (x)         =  \frac{  \frac{-  \sin^{2} ( \alpha )   + \cos ^{2} ( \alpha ) }{ \cos^{2} ( \alpha ) }}{ \frac{3 \sin^{2} ( \alpha ) +  \cos ^{2} ( \alpha ) }{ \cos^{2} ( \alpha ) }}  \\

 \implies       \tan^{2} (x)         =  \frac{ -  \tan^{2} ( \alpha )   + 1}{3 \tan^{2} ( \alpha ) + 1 }  \\

 \implies       \tan^{2} (x)         =  \frac{1 -  \tan^{2} ( \alpha )    }{1 + 3 \tan^{2} ( \alpha )  }  \\

Similar questions