Math, asked by rahulr980pc1we2, 1 year ago

if cos x + cos y=2 then find sin x + sin y

Answers

Answered by Leukonov
2
if x or y is a real no:
→max. value of Cos x = max. value of Cos y =1

i.e, Cos x + Cos y =2→1+1=2

Now When Cos a =1 Sin a= 0 [a=0°]
and when Cos a =0 Sin a =1 [a=90°]

so Here Cos x and Cos y are both 1

so Sin x and Sin y must be 0

→ Sin x + Sin y =0 [0+0=0]
Answered by Pitymys
1

Given that  \cos x+\ cos y=2 . Since  -1\leq \cos \theta \leq 1 , the above equation gives  \cos x=\cos y =1 .

Since  \sin x=\pm \sqrt{1-\cos ^2x} =\pm \sqrt{1-1} =0

Similarly,  \sin y=0

Hence,

 \sin x+\sin y=0

Similar questions