Math, asked by anushka00934, 9 months ago

If cos x = cos60° cos30°+sin60° sin30°, then find the value of x.​

Answers

Answered by parthawasthiyo4
3

Answer:

√3/2

Step-by-step explanation:

cos60°•cos30° + sin60°•sin30°

> (1/2×√3/2) + (√3/2×1/2)

> √3/4 +√3/4

> (2√3)/4

> √3/2

Answered by Anonymous
4

Answer:

Hey!

Given Condition :-

cosx = cos60 cos30 + sin60 sin30

 \cos(x )  =  \frac{1}{2}  \times  \frac{ \sqrt{3} }{2}  + \frac{ \sqrt{3} }{2} \times  \frac{1}{2}

• Trigonometric Values :-

 \cos(60)  =  \frac{1}{2}

 \cos(30)  =   \frac{ \sqrt{3} }{2}

 \sin(30)  =  \frac{1}{2}

 \cos(x)  =  \frac{ \sqrt{3} }{4}  + \frac{ \sqrt{3} }{4}

 \cos(x)  =   \frac{ \sqrt[2]{3} }{4}

 \cos(x )  =  \frac{ \sqrt{3} }{2}

x = 30

\boxed{20 \: thanks = inbox}

\boxed{f} \red{o} \boxed{l} \pink{l}\boxed{o} \green{w} \:  \:  \boxed{m} \purple{e}

Similar questions