If cos x+ cosy + cos z = 0 then find the value of cos 3x + cos 3y + cos 3z
Answers
Answered by
4
Answer:
cos z = -(cos x + cos y)
and similar for sin z.
Square both equations and add to get
1=2+2(cos x cos y + sin x sin y)
cos(y-x)=-1/2.
y-x= \pm 2\pi/3 + 2n\pi.
Suppose y-x=2\pi/3+2n\pi.
cos y = cos(x+2\pi/3) =-1/2cos x - r3/2sin x,
sin y = sin (x+2\pi/3) = -1/2sin x+r3/2cos x.
cos z = -(cos x - 1/2cos x - r3/2sin x)
=-cos(x+\pi/3)
=cos(x-2\pi/3).
sin z=-(sin x - 1/2sinx + r3/2cos x)
=-sin(x+\pi/3)
=sin(x-2\pi/3).
So z=x-2\pi/3.
cos 3x+cos3y+cos 3z
=cos 3x +cos3x+cos3x
=3cos3x
=3cos(x+y+z).
Step-by-step explanation:
Similar questions