Math, asked by tharun10, 1 year ago

if cos x equal to Cos 60 degree cos 30 degree + sin 60 degree sin 30 degree then find x

Answers

Answered by saindulakavath
20
cosx=cos60.cos30+sin30.sin 60
cosx=1/2.root3/2+1/2(root3/2)
cosx=2(root3/4)
cosx=root3/4
cosx=cos30
x=30
Answered by pinquancaro
13

The value of x is 30°.

Step-by-step explanation:

Given : \cos x=\cos 60^\circ\cos 30^\circ+\sin 60^\circ\sin 30^\circ

To find : The value of x ?

Solution :

Equation \cos x=\cos 60^\circ\cos 30^\circ+\sin 60^\circ\sin 30^\circ

Using trigonometric values,

\cos 60^\circ=\frac{1}{2}

\cos 30^\circ=\frac{\sqrt3}{2}

\sin 60^\circ=\frac{\sqrt3}{2}

\sin 30^\circ=\frac{1}{2}

Substitute the values in the equation,

\cos x=(\frac{1}{2})(\frac{\sqrt3}{2})+(\frac{\sqrt3}{2})(\frac{1}{2})

\cos x=\frac{\sqrt3}{4}+\frac{\sqrt3}{4}

\cos x=\frac{2\sqrt3}{4}

\cos x=\frac{\sqrt3}{2}

\cos x=\cos 30^\circ

On comparing x is 30.

Therefore, the value of x is 30°.

#Learn more

If cos is equal to 2 x is equal to Cos 60 degree into cos 30 degree + sin 60 degree into sin 30 degree find sin 2x

https://brainly.in/question/7791107

Similar questions