Math, asked by hannahmatthew, 1 year ago

If cos x is equals to 2 minus 3 by 5 , X lies in the third quadrant find the values of other five trigonometric functions explain

Answers

Answered by MaheswariS
6

Answer:

\bf{sinx=\frac{-4}{5}}

\bf{tanx=\frac{4}{3}}

\bf{cosecx=\frac{-5}{4}}

\bf{secx=\frac{-5}{3}}

\bf{cotx=\frac{3}{4}}

Step-by-step explanation:

\text{Given:}

cosx=\frac{-3}{5}

\text{we know that,}sin^2x=1-cos^2x

sin^2x=1-(\frac{-3}{5})2

sin^2x=1-\frac{9}{25}

sin^2x=\frac{25-9}{25}

sin^2x=\frac{16}{25}

sinx=\pm\frac{4}{5}

But x lies in 3rd quadrant.

\implies\:\bf{sinx=\frac{-4}{5}}

Now,

tanx=\frac{sinx}{cosx}

tanx=\frac{\frac{-4}{5}}{\frac{-3}{5}}

\implies\:\bf{tanx=\frac{4}{3}}

\bf{sinx=\frac{-4}{5}\implies\:cosecx=\frac{-5}{4}}

\bf{cosx=\frac{-3}{5}\implies\:secx=\frac{-5}{3}}

\bf{tanx=\frac{4}{3}\implies\:cotx=\frac{3}{4}}

Similar questions