if cos(x+iy)=r(cos alpha+i sin alpha) prove that y=(1)/(2)log(sin(x-alpha))/(sin(x+alpha))
Answers
Answered by
10
Answer
y=(1)/(2)log(sin(x-α))/(sin(x+α))
Step-by-step explanation
given,
cos(x+iy)=r(cosα+i sin α)
To prove ,
y=(1)/(2)log(sin(x-α))/(sin(x+α))
solution,
cos(x+iy)=r(cosα+i sin α)
cosx . cosiy - sinx . siniy = rcosα +irsinα -------------- (1)
we know that,
cosiy = е^y + е^-y/2
siniy = е^y - е^-y/2
then (1) becomes,
cosx (е^y + е^-y/2) - sinx(е^y - е^-y/2) = rcosα +irsinα
comparing coeffients of cosx and sinx,
е^y + е^-y/2 = rcosα & е^y - е^-y/2 = rsinα ---------(2)
we know that ,
sin(x+α) = sinx cosα + cosx sinα
sin(x-α) = sinx cosα - cosx sinα
removing the exponential from (2) , we get,
y=(1)/(2)log(sin(x-α))/(sin(x+α))
hence proved
Similar questions