If cos X=tanY cosY=tanZ cosZ =tanX then sinx=siny=sinz
Answers
Question :- if cos x = tan y cos y= tan z cos z = tan x then sin x = sin y = sin z = ?
Solution :-
→ cos x = tan y
Squaring both sides,
→ cos² x = tan² y
using tan²A = (sec²A - 1) in RHS now,
→ cos² x = (sec² y - 1) ----------- Eqn(1)
Also,
→ cos y = tan z
using cosA = (1/secA) and tanA = (1/cotA) ,
→ (1/sec y) = 1/(cot z)
→ sec y = cot z --------------- Eqn(2)
Putting value of Eqn(2) in Eqn(1) Now,
→ cos² x = (cot² z - 1)
→ 1 + cos² x = cot² z
using cotA = (cosA /sinA) Now,
→ 1 + cos² x = (cos² z / sin² z)
Now, using sin²A = (1 - cos²A) , in RHS denominator,
→ 1 + cos² x = cos² z / ( 1 - cos² z )
Now, we have given that, cos z = tan x
So,
→ 1 + cos² x = tan² x / ( 1 - tan² x )
using cos²A = (1 - sin²A) in LHS, and tanA = (sinA/cosA) in RHS , we get,
→ 1 + ( 1 - sin² x ) = ( sin² x / cos² x ) / {1 - (sin² x / cos² x)}
→ 2 - sin² x = sin² x / ( cos² x - sin² x )
using cos²A - sin²A = 1 - 2sin²A in RHS now,
→ 2 - sin² x = sin² x / ( 1 - 2 sin² x )
Cross - Multiply,
→ ( 2 - sin² x )( 1 - 2 sin² x ) = sin² x
→ 2 - 4sin² x - sin²x - sin²x + 2sin⁴ x = 0
→ 2 sin⁴ x - 6 sin² x + 2 = 0
→ 2(sin⁴ x - 3 sin² x + 1) = 0
→ sin⁴ x - 3 sin² x + 1 = 0
Now, Let, sin² x = M
Than,
→ M² - 3M + 1 = 0
using, Sridharacharya formula for Solving Quadratic Equation ax² +bx + c = 0 says that,
→ x = [ -b±√(b²-4ac) / 2a ]
Here,
- a = 1
- b = (-3)
- c = 1
→ M = [ - (-3) ± √{(-3)² - 4*1*1} ] / 2*1
→ M = [ 3 ± √(9-4) ] / 2
→ M = ( 3 ± √5 ) / 2
Therefore,
→ sin² x = (3 ± √5) / 2
But, ( 3 + √5 ) /2 > 1 and sin² x ≤ 1.
Hence,
→ sin² x = ( 3 - √5 ) / 2
→ sin² x = ( 6 - 2√5 ) / 4
→ sin² x = ( 5 + 1 - 2 * √5 * 1 ) / 4
→ sin² x = {(√5)² + (1)² - 2 * √5 * 1} / 4
comparing RHS numerator with a² + b² - 2ab = (a - b)² ,
→ sin² x = (√5 - 1)² / 4
Square - root both sides now,
→ sin x = ( √5 - 1 ) / 2
Multiply and divide by 2 both numerator and denominator of RHS now,
→ sin x = 2( √5 - 1 ) / (2 * 2)
→ sin x = 2( √5 - 1 ) / 4
→ sin x = 2[ ( √5 - 1 ) / 4 ]
using value of sin 18° in RHS now,
→ sin x = 2 sin 18°
Hence, similarly we can show that sin x = sin y = sin z = 2 sin 18° = ( √5 - 1 ) / 2 ...