If cos (x - y) = a cos (x + y), then cot x cot y is equal to
Answers
Answered by
1
Given,
cos(x-y) = a cos(x+y) ;
ie,
cos(x)cos(y)+sin(x)sin(y) =a[cos(x)cos(y) - sin(x)sin(y)] ;
ie,
cos(x)cos(y)+sin(x)sin(y)
=acos(x)cos(y) - asin(x)sin(y);
ie,
sin(x)sin(y)+asin(x)sin(y)
=acos(x)cos(y)-cos(x)cos(y);
Now we have,
(1+a)sin(x)sin(y) = (a-1)cos(x)cos(y);
ie,
cos(x)cos(y)÷sin(x)sin(y) =(1+a)÷(a-1);
(since, we know that cosx ÷ sinx = cotx),
We now have,
cotx coty = (1+a)÷(a-1)
or
cotx coty = (1+a)/(a-1)
Similar questions
English,
6 months ago
English,
6 months ago
English,
6 months ago
Math,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Chemistry,
1 year ago