Math, asked by avinashsingh48, 1 year ago

if cos (x-y) = a cos (x+y), then cotx coty is equal​

Answers

Answered by HappiestWriter7
87
 \huge \bf{ \red{ \mid{ \overline{ \underline{ANSWER}}} \mid}}

\tt \cos(x - y) \: = \: a \: \cos(x + y)

 \tt\dfrac{ \cos(x - y) }{ \cos(x + y) } = \: a

<b>By compenendo and divedendo

\tt \dfrac{ \cos(x - y) + \cos(x + y) }{ \cos(x - y) - \cos(x + y) } \: = \tt\: \dfrac{a + 1}{a - 1}

 \tt\cot(x) \cot(y) = \tt\dfrac{a + 1}{a - 1}
Answered by Anonymous
5

To find : cos(x+y) / cos(x-y)

==) (cos x cos y -sin x sin y)/ (cos x cos y + sin x sin y)

==) (2 sin x sin y - sin x sin y)/ (2 sin x sin y + sin x sin y) substitution

==) sin x sin y / 3× sin x sin y

==) 1× sin x sin y/ 3× sin x sin y

==) 1/3 ans.

HOPE IT HELP

Similar questions