If cos² θ - sin² θ = tan² φ, then prove that cos φ = 1/√2 cos θ
Answers
Answered by
0
Step-by-step explanation:
Given (cos2θ−sin2θ)=tan2ϕ
To prove:
cosϕ=2cosθ1
(cos2θ−sin2θ)=tan2ϕ
add 1 on both sides
(cos2θ−sin2θ)=tan2ϕ+1
cos2+(1−sinθ)=(1+tan2ϕ)
cos1θ+cos2θ=sec2ϕ
⇒ 2cos2θ=sec2ϕ
⇒ 2cos2θcos2ϕ=1
⇒ cos2ϕ=2cos1θ1
⇒ cosθ=1/root2 cos o
Similar questions