If Cos2a-sin2a=tan2b,prove that √2cosa.cosb=1
Answers
Answered by
1
We start with:
cos² a - sin² a = tan² b
and from the trigonometric formula: cos² a + sin² a = 1
becomes : sin² a = 1 - cos² a
Also we know that tan b = sin b / cos b
Therefore: cos² a - ( 1 - cos² a ) = sin² b / cos² b
cos² a - 1 + cos² a = sin² b / cos² b
2 cos² a - 1 = ( 1 - cos² b ) / cos² b /· ( cos²b ) - we have to multiply both sides of the equation by cos²b
2 cos² a cos² b - cos² b = 1 - cos² b
2 cos² a cos² b = 1 - cos² b + cos² b
2 cos² a cos² b = 1 ( take the square root of the both sides of the equation )
√2 cos a · cos b = 1
Hence proved.
Answered by
2
given, cos²a - sin²a = tan²b
we have to prove that √2cosa.cosb = 1
cos²a - sin²a = tan²b
cos²a - (1 - cos²a) = tan²b
cos²a - 1 + cos²a = tan²b
2cos²a = 1 + tan²b
we know, sec²x - tan²x = 1,
so, 1 + tan²b = sec²b
2cos²a = sec²b
2cos²a = 1/cos²b
2cos²a.cos²b = 1
taking square root both sides ,
√2cosa.cosb = ±1
hence proved √2cosa.cosb = 1
we have to prove that √2cosa.cosb = 1
cos²a - sin²a = tan²b
cos²a - (1 - cos²a) = tan²b
cos²a - 1 + cos²a = tan²b
2cos²a = 1 + tan²b
we know, sec²x - tan²x = 1,
so, 1 + tan²b = sec²b
2cos²a = sec²b
2cos²a = 1/cos²b
2cos²a.cos²b = 1
taking square root both sides ,
√2cosa.cosb = ±1
hence proved √2cosa.cosb = 1
Similar questions
Physics,
7 months ago
Chemistry,
7 months ago
Social Sciences,
7 months ago
Social Sciences,
1 year ago
English,
1 year ago
Physics,
1 year ago