Math, asked by asksavvy6535, 8 months ago

If cos2x-cosx= sin4x - sinx(
where tan doesnot equal to 1) find value of cos3x - sin3x

Answers

Answered by MaheswariS
4

\textbf{Given:}

cos2x-cosx=sin4x-sinx

\textbf{To find:}

\text{The value of $cos3x-sin3x$}

\textbf{Solution:}

\text{Consider,}

cos3x-sin3x

=(4\,cos^3x-3\,cosx)-(3\,sinx-4\,sin^3x)

=4\,cos^3x-3\,cosx-3\,sinx+4\,sin^3x

=4(cos^3x+sin^3x)-3(cosx+sinx)

=4(cosx+sinx)(cos^2x-cosx\,sinx+sin^2x)-3(cosx+sinx)

=4(cosx+sinx)(1-cosx\,sinx)-3(cosx+sinx)

=(cosx+sinx)(4(1-cosx\,sinx)-3)

=(cosx+sinx)(4-4\,cosx\,sinx-3)

=(cosx+sinx)(1-4\,cosx\,sinx)

=(cosx+sinx)(1-2(2\,sinx\,cosx))

\implies\bf\,cos3x-sin3x=(cosx+sinx)(1-2\,sin\,2x)).........(1)

\text{Now,}

cos2x-cosx=sin4x-sinx

\text{Rearranging terms we get}

sinx-cosx=sin4x-cos2x

sinx-cosx=2\,sin2x\,cos2x-cos2x

sinx-cosx=cos2x(2\,sin2x-1)

\dfrac{sinx-cosx}{cos2x}=2\,sin2x-1

\implies\,1-2\,sin2x=\dfrac{cosx-sinx}{cos2x}.........(2)

\text{Using (2) in (1), we get}

cos3x-sin3x=(cosx+sinx)(\dfrac{cosx-sinx}{cos2x})

cos3x-sin3x=\dfrac{cos^2x-sin^2x}{cos2x})

cos3x-sin3x=\dfrac{cos^2x-sin^2x}{cos2x}

cos3x-sin3x=\dfrac{cos2x}{cos2x}

\implies\bf\,cos3x-sin3x=1

\textbf{Answer:}

\textbf{The value of $\bf\,cos3x-sin3x$ is 1}

.

Similar questions