Math, asked by palsabita1957, 30 days ago

If (cos⁴α sec²β) + (sin⁴α cosec²β) = 1, prove that sin⁴α + sin⁴β = 2 sin²α sin²β

▪ wanted answers with step - by - step - explanation ✔
▪ no irrelevant answers / copied answers ❌
▪ those who can't understand they no need to mention in the answer slot otherwise account will be reported ⚠

Answers

Answered by MrImpeccable
14

ANSWER:

Given:

  • (cos⁴α sec²β) + (sin⁴α cosec²β) = 1

To Prove:

  • sin⁴α + sin⁴β = 2 sin²α sin²β

Solution:

We are given that,

\implies(\cos^4\alpha\sec^2\beta)+(\sin^4\alpha\csc^2\beta)=1

We know that,

\hookrightarrow\sec\theta=\dfrac{1}{\cos\theta}

And,

\hookrightarrow\csc\theta=\dfrac{1}{\sin\theta}

So,

\implies(\cos^4\alpha\sec^2\beta)+(\sin^4\alpha\csc^2\beta)=1

\implies\dfrac{\cos^4\alpha}{\cos^2\beta}+\dfrac{\sin^4\alpha}{\sin^2\beta}=1

\implies\dfrac{(\cos^2\alpha)^2}{\cos^2\beta}+\dfrac{\sin^4\alpha}{\sin^2\beta}=1

We know that,

\hookrightarrow \cos^2\theta=1-\sin^2\theta

So,

\implies\dfrac{(\cos^2\alpha)^2}{\cos^2\beta}+\dfrac{\sin^4\alpha}{\sin^2\beta}=1

\implies\dfrac{(1-\sin^2\alpha)^2}{(1-\sin^2\beta)}+\dfrac{\sin^4\alpha}{\sin^2\beta}=1

Taking LCM,

\implies\dfrac{[(\sin^2\beta)\times(1-\sin^2\alpha)^2]+[(1-\sin^2\beta)\times(\sin^4\alpha)]}{(1-\sin^2\beta)(\sin^2\beta)}=1

\implies\dfrac{[(\sin^2\beta)\times(1^2+\sin^4\alpha-2\sin^2\alpha)]+[(1-\sin^2\beta)\times(\sin^4\alpha)]}{(1-\sin^2\beta)(\sin^2\beta)}=1

Transposing denominator to RHS,

\implies\dfrac{[(\sin^2\beta)\times(1+\sin^4\alpha-2\sin^2\alpha)]+[(1-\sin^2\beta)\times(\sin^4\alpha)]}{(1-\sin^2\beta)(\sin^2\beta)}=1

\implies[(\sin^2\beta)\times(1+\sin^4\alpha-2\sin^2\alpha)]+[(1-\sin^2\beta)\times(\sin^4\alpha)]=(1-\sin^2\beta)(\sin^2\beta)

\implies(\sin^2\beta+\sin^4\alpha\sin^2\beta-2\sin^2\alpha\sin^2\beta)+(\sin^4\alpha-\sin^4\alpha\sin^2\beta)=\sin^2\beta-\sin^4\beta

So,

\implies\sin^2\beta+\sin^4\alpha\sin^2\beta-2\sin^2\alpha\sin^2\beta+\sin^4\alpha-\sin^4\alpha\sin^2\beta=\sin^2\beta-\sin^4\beta

Cancelling sin²β on both sides,

\implies\sin^4\alpha\sin^2\beta-2\sin^2\alpha\sin^2\beta+\sin^4\alpha-\sin^4\alpha\sin^2\beta=-\sin^4\beta

On rearranging,

\implies(\sin^4\alpha\sin^2\beta-\sin^4\alpha\sin^2\beta)-2\sin^2\alpha\sin^2\beta+\sin^4\alpha=-\sin^4\beta

On cancelling sin⁴α sin²β,

\implies-2\sin^2\alpha\sin^2\beta+\sin^4\alpha=-\sin^4\beta

\implies\sin^4\alpha+\sin^4\beta-2\sin^2\alpha\sin^2\beta=0

Transposing 2 sin²α sin²β, to RHS,

\implies\bf sin^4\alpha+sin^4\beta=2sin^2\alpha sin^2\beta

And, this is what we had to prove.

HENCE PROVED!!

Answered by ITzUnknown100
4

Answer:

Didi what did Tomboyish told because the Kit is deleting my relevant answers

Step-by-step explanation:

Similar questions