If cos⁴A+cos²A=1,prove that tan⁴A+tan²A=1
Answers
Answered by
0
hope this helps u
QUESTION :
tan⁴A +tan²A=1
then show that cos⁴ A+cos²A=1
ANSWER :
Here
tan⁴A+tan²A=1
tan⁴A=1-tan²A
tan⁴A=sec²A
sin⁴A/cos⁴A =1/cos²A
sin⁴A=cos²A
so by taking square root on both the sides
√sin⁴A=√cos²A
sin²A=cosA........1
now
LHS
=cos⁴A +cos²A
sin²A+cos²A.....from 1
=1
=RHS
identity used :
sin²A+cos²A=1
tanA=sinA/cosA
1+tan²A=sec²A
Answered by
2
Answer:
tan⁴A +tan²A=1
then show that cos⁴ A+cos²A=1
ANSWER :
Here
tan⁴A+tan²A=1
tan⁴A=1-tan²A
tan⁴A=sec²A
sin⁴A/cos⁴A =1/cos²A
sin⁴A=cos²A
so by taking square root on both the sides
√sin⁴A=√cos²A
sin²A=cosA........1
now
LHS
=cos⁴A +cos²A
sin²A+cos²A.....from 1
=1
=RHS
identity used :
sin²A+cos²A=1
tanA=sinA/cosA
1+tan²A=sec²A
Similar questions