Math, asked by radhesham3204, 10 months ago

If cos⁴alpha by cos²beta +sin⁴alpha by sin² beta =1 prove that cos⁴ beta by cos²alpha + sin⁴beta by sin² alpha =1

Answers

Answered by akankshakhandel
3

Answer:

Step-by-step explanation:

Attachments:
Answered by ashishks1912
2

From the given equation we have proved that \frac{cos^4\beta}{cos^2\alpha}+\frac{sin^4\beta}{sin^2\alpha}=1  

Hence proved Step-by-step explanation: Given equation is \frac{cos^4\alpha}{cos^2\beta}+\frac{sin^4\alpha}{sin^2\beta}=1

To prove that \frac{cos^4\beta}{cos^2\alpha}+\frac{sin^4\beta}{sin^2\alpha}=1

Now to solve the given equation :

\frac{cos^4\alpha}{cos^2\beta}+\frac{sin^4\alpha}{sin^2\beta}=1

\frac{(cos^2\alpha)^2}{cos^2\beta}+\frac{(sin^2\alpha)^2}{sin^2\beta}=1

\frac{(1-sin^2\alpha)^2}{cos^2\beta}+\frac{(sin^2\alpha)^2}{sin^2\beta}=1

\frac{(1)^2-2(1)sin^2\alpha+(sin^2\alpha)^2}{cos^2\beta}+\frac{(sin^2\alpha)^2}{sin^2\beta}=1

here a=1 and b=sin^2\alpha )

\frac{sin^2\beta(1-2sin^2\alpha+sin^4\alpha)+(sin^2\alpha)^2(cos^2\beta)}{cos^2\beta sin^2\beta}=1

\frac{sin^2\beta(1)-(2sin^2\alpha)sin^2\beta+(sin^4\alpha)sin^2\beta+(sin^2\alpha)^2(1-sin^2\beta)}{cos^2\beta sin^2\beta}=1

sin^2\beta-2sin^2\alpha sin^2\beta+sin^4\alpha sin^2\beta+(sin^2\alpha)^2(1)-(sin^2\alpha)^2sin^2\beta=1(cos^2\beta sin^2\beta)

sin^2\beta-2sin^2\alpha sin^2\beta+sin^4\alpha sin^2\beta+sin^4\alpha-sin^4\alpha sin^2\beta=cos^2\beta sin^2\beta

sin^2\beta-2sin^2\alpha sin^2\beta+sin^4\alpha sin^2\beta+sin^4\alpha-sin^4\alpha sin^2\beta=(1-sin^2\beta)sin^2\beta

sin^2\beta-2sin^2\alpha sin^2\beta+sin^4\alpha sin^2\beta+sin^4\alpha-sin^4\alpha sin^2\beta=(1)sin^2\beta-(sin^2\beta)sin^2\beta

sin^2\beta-2sin^2\alpha sin^2\beta+sin^4\alpha=sin^2\beta-(sin^2\beta)^2

sin^2\beta-2sin^2\alpha sin^2\beta+sin^4\alpha-sin^2\beta+sin^4\beta=0

-2sin^2\alpha sin^2\beta+sin^4\alpha+sin^4\beta=0

Rewritting the above equation we have

sin^4\alpha-2sin^2\alpha sin^2\beta+sin^4\beta=0

(sin^2\alpha)^2-2sin^2\alpha sin^2\beta+(sin^2\beta)^2=0

( by using the identity (a-b)^2=a^2-2ab+b^2 here a=sin^2\alpha and b=sin^2\beta )

(sin^2\alpha-sin^2\beta)^2=0

sin^2\alpha-sin^2\beta=0

sin^2\alpha=sin^2\beta

Which implies that 2\alpha=2\beta

Therefore \alpha=\beta

Now we have to prove that \frac{cos^4\beta}{cos^2\alpha}+\frac{sin^4\beta}{sin^2\alpha}=1

Taking LHS \frac{cos^4\beta}{cos^2\alpha}+\frac{sin^4\beta}{sin^2\alpha} and \alpha=\beta

The above expression  becomes

=\frac{cos^4\alpha}{cos^2\alpha}+\frac{sin^4\alpha}{sin^2\alpha} ( since \alpha=\beta  )

=\frac{(cos^2\alpha)^2}{cos^2\alpha}+\frac{(sin^2\alpha)^2}{sin^2\alpha}  

=cos^2\alpha+sin^2\alpha  

( by the identity cos^\theta+sin^2\theta=1  here \theta=\alpha  )

Therefore LHS=RHS

Therefore \frac{cos^4\beta}{cos^2\alpha}+\frac{sin^4\beta}{sin^2\alpha}=1

Hence proved

Similar questions