Math, asked by 4173stkabirdin, 10 months ago

if cos73=m/n show that cosec73-sec17=m/n√n2-m2

Answers

Answered by MaheswariS
2

your question is wrong.

I think your question may be

If cos73=m/n show that

cosec\,73-sec\,73=\frac{mn-n\sqrt{n^2-m^2}}{m\sqrt{n^2-m^2}}

Given:

cos\,73=\frac{m}{n}

We know that

sin^2\,73=1-cos^2\,73

sin^2\,73=1-\frac{m^2}{n^2}

sin^2\,73=\frac{n^2-m^2}{n^2}

sin\,73=\frac{\sqrt{n^2-m^2}}{n}

\implies\bf\,cosec\,73=\frac{n}{\sqrt{n^2-m^2}}

Also,

sec\,73=\frac{n}{m}

Now,

cosec\,73-sec\,73

=\frac{n}{\sqrt{n^2-m^2}}-\frac{n}{m}

=\frac{mn-n\sqrt{n^2-m^2}}{m\sqrt{n^2-m^2}}

Answered by harendrachoubay
1

\csc73-\cos17=\dfrac{m}{n\sqrt{n^2-m^2}}, proved.

Step-by-step explanation:

We have,

\cos73=\dfrac{m}{n}

To prove that, \csc73-\cos17=\dfrac{m}{n\sqrt{n^2-m^2}}.

\cos73=\dfrac{m}{n}

\sin73=\dfrac{\sqrt{n^2-m^2}}{n}=\dfrac{p}{h} [ ∵ \cos(90-A)=\sin A]

Where, b = base and h = hypotaneous

∴ Perpendicular, p=\sqrt{h^{2}-b^{2}}

=\sqrt{n^{2}-m^{2}}

\csc73=\dfrac{h}{p} =\dfrac{n}{\sqrt{n^2-m^2}}

L.H.S. = \csc73-\cos17

= \csc73-\sin73

= \dfrac{n}{\sqrt{n^2-m^2}}-\dfrac{\sqrt{n^2-m^2}}{n}

= \dfrac{m}{n\sqrt{n^2-m^2}}

= R.H.S., proved.

Similar questions