Math, asked by kumarprafful341, 2 months ago

If cosA=
1/2
then find the value of
2secA*sinA/1+tan^2A​

Answers

Answered by Anonymous
12

APPROPRIATE QUESTION:-

If cosA = 1/2 Then find the value of 2secA × sinA / 1+ tan²A

SOLUTION:-

cosA = 1/2

But We know cos60° = 1/2

So,

cosA = cos60°

A = 60°

Now,

\dfrac{2secA \times sinA}{1+tan^2A}

\dfrac{2sec60° \times sin60°}{1 + tan^260°}

  • sec 60° = 2
  • sin60° = √3/2
  • tan60° = √3

Putting down the values

 \dfrac{2  \times 2 \times  \frac{ \sqrt{3} }{2} }{1 +  \sqrt({3}) {}^{2}  }

 \dfrac{ \dfrac{4 \sqrt{3} }{2} }{1 + 3}

 \dfrac{2 \sqrt{3} }{4}

 \dfrac{ \sqrt{3} }{2}

\dfrac{2secA \times sinA}{1+tan^2A}= \dfrac{ \sqrt{3} }{2}

KNOW MORE :-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions