If cosA=12/13, then find Sina and tanA
Answers
Answered by
221
Hi ,
Cos A = 12 /13 ----( 1 )
We know the Trigonometric identity
Sin²A + cos² A = 1
Sin² A + ( 12 /13 )² = 1
Sin² A + 144 / 169 = 1
Sin² A = 1 - ( 144 / 169 )
Sin² A = ( 169 - 144 ) / 169
Sin² A = 25 / 169
Sin A = √( 5/ 13 )²
Sin A = 5 / 13 --- ( 2 )
Tan A = sinA / cosA
= ( 5/13 ) / ( 12 / 13 )
= 5/12
Therefore ,
SinA = 5/13,
TanA = 5/12
I hope this helps you.
:)
Cos A = 12 /13 ----( 1 )
We know the Trigonometric identity
Sin²A + cos² A = 1
Sin² A + ( 12 /13 )² = 1
Sin² A + 144 / 169 = 1
Sin² A = 1 - ( 144 / 169 )
Sin² A = ( 169 - 144 ) / 169
Sin² A = 25 / 169
Sin A = √( 5/ 13 )²
Sin A = 5 / 13 --- ( 2 )
Tan A = sinA / cosA
= ( 5/13 ) / ( 12 / 13 )
= 5/12
Therefore ,
SinA = 5/13,
TanA = 5/12
I hope this helps you.
:)
Answered by
55
Hey here is ur solution...GOT IT!!! CHEERS...
Attachments:
Similar questions