if cosA =3/5, find 9 cotsquare A-1.
Answers
Answered by
16
cos²A = 9/25
sin²A = 1-cos²A = 16/25
cot²A = cos²A/ sin²A = 9/16
9cot²A -1 = 81/16-1 = 65/16
sin²A = 1-cos²A = 16/25
cot²A = cos²A/ sin²A = 9/16
9cot²A -1 = 81/16-1 = 65/16
Answered by
15
Hey !!
---------
cos A = 3 / 5
We know that ,
sin2A + cos2A = 1
sin2A + (3/5 )2 = 1
sin2A = 1 - 9 /25
sin2A = 16/25
sinA = 4/5
Now !!!
cot A = cos A / sin A
= 3 / 5 × 5 / 4
= 3 / 4
Now !!
9 cot2A - 1
9 × 9 / 16 - 1
81 / 16 - 1
65/16
---------
cos A = 3 / 5
We know that ,
sin2A + cos2A = 1
sin2A + (3/5 )2 = 1
sin2A = 1 - 9 /25
sin2A = 16/25
sinA = 4/5
Now !!!
cot A = cos A / sin A
= 3 / 5 × 5 / 4
= 3 / 4
Now !!
9 cot2A - 1
9 × 9 / 16 - 1
81 / 16 - 1
65/16
Similar questions