English, asked by sankar33, 1 year ago

if cosA =3/5,then find cos2A,sin2A,cos3A?

Answers

Answered by tejasri2
16
If...
cosA = 3/5 then sinA = 4/5

cos 2A = cos²A - sin ² A
= (3/5)²- (4/5)²
=9/5 - 16/5
=(9-16)/5
=-7/5

sin 2A = 2sinAcosA
=2×4/5×3/5
=24/25

cos 3A = 4 cos³A - 3 cos A
=4(3/5)³-3(3/5)
=4(27/125) - 9/5
=108/125-9/5
=(108-27)/125
=81/125
I hope it helps u

sankar33: why taken the sinA=4/5
tejasri2: apply pythagorus therem
tejasri2: its a long process
tejasri2: ok
tejasri2: brainliest
Answered by Syamkumarr
2

Answer:

  cos 2A  =  -7/25 ,  sin 2A = 24/25   cos 3A = - 117/125  

Explanation:

Given problem

cos A = 3/5  then find  i)  cos2A,  ii)  sin2A,  iii)  cos3A  

⇒ given that cosA = \frac{3}{5}  

we know that in a right angled triangle  cos θ =  \frac{adjacent side }{hypotenuse}  

⇒ adjacent side = 3    and    hypotenuse = 5

⇒ from Pythagorean theorem in a right angled triangle

     hypotenuse² = adjacent side² + opposite side²

⇒   5²  =  3² + opposite side²

⇒ opposite side² = 5² - 3²  

                             =  25 - 9 = 16 = 4²      

     opposite side =  4  

⇒  sin A = \frac{opposite side}{hypotenuse} = \frac{4}{5}    

i)  cos 2A  

⇒ cos 2A = cos²A - sin²A

                = [\frac{3}{5}]^{2} - [\frac{4}{5} ] ^{2} =  \frac{9}{25} - \frac{16}{25}  =-\frac{7}{25}  

ii)  sin 2A  

⇒ sin 2A =  2 sin A cos A

               =   2(\frac{4}{5} )(\frac{3}{5})  = \frac{24}{25}      

 iii)  cos 3A  

 ⇒ cos 3A =  4 cos³A - 3 cos A

                  = 4(\frac{3}{5})^{3}-3(\frac{3}{5} )  

                  = 4(\frac{27}{125} ) - 3(\frac{3}{5} )  

                  = \frac{108}{125} - \frac{9}{5}  = \frac{108 - 225}{125} =  -\frac{117}{125}  

Similar questions