if cosA =3/5,then find cos2A,sin2A,cos3A?
Answers
cosA = 3/5 then sinA = 4/5
cos 2A = cos²A - sin ² A
= (3/5)²- (4/5)²
=9/5 - 16/5
=(9-16)/5
=-7/5
sin 2A = 2sinAcosA
=2×4/5×3/5
=24/25
cos 3A = 4 cos³A - 3 cos A
=4(3/5)³-3(3/5)
=4(27/125) - 9/5
=108/125-9/5
=(108-27)/125
=81/125
I hope it helps u
Answer:
cos 2A = -7/25 , sin 2A = 24/25 cos 3A = - 117/125
Explanation:
Given problem
cos A = 3/5 then find i) cos2A, ii) sin2A, iii) cos3A
⇒ given that cosA =
we know that in a right angled triangle cos θ =
⇒ adjacent side = 3 and hypotenuse = 5
⇒ from Pythagorean theorem in a right angled triangle
hypotenuse² = adjacent side² + opposite side²
⇒ 5² = 3² + opposite side²
⇒ opposite side² = 5² - 3²
= 25 - 9 = 16 = 4²
opposite side = 4
⇒ sin A =
i) cos 2A
⇒ cos 2A = cos²A - sin²A
= =
ii) sin 2A
⇒ sin 2A = 2 sin A cos A
= =
iii) cos 3A
⇒ cos 3A = 4 cos³A - 3 cos A
=
=
= = =