Math, asked by vandanapatel8505, 7 months ago

if cosA=4/5, find sinA and cosA.​

Answers

Answered by Anonymous
4

Step-by-step explanation:

{  \sf{  \underline{  \red{  \underline{  \red{Given}}}} :  -}}

 \displaystyle \sf \longrightarrow \:  \cos(a)  =  \frac{4}{5}

{  \sf{  \underline{  \red{  \underline{  \red{To Find}}}} :  -}}

 \displaystyle \sf \longrightarrow \:  \sin(a) \: and \:  \cos(a)

{  \sf{  \underline{  \red{  \underline{  \red{Solution}}}} :  -}}

 \displaystyle \sf \tt \ :  \implies  \cos(a)  =  \:  \frac{4}{5}  \\  \\ \displaystyle \sf \tt \ :  \implies  \frac{b}{h}  =  \frac{4}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \bigstar  \:  \:  \:  \:   b \:  = 4 \: and \: h \:  =  \: 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \bigstar  \:  \:  \:  \: p \:  =  \: 3(for \: triplates) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \tt \ :  \implies  \sin(a)  =  \frac{p}{h}  =  \frac{3}{5}  \\  \\ \displaystyle \sf \tt \ :  \implies  \tan(a)  =  \frac{p}{b}  =  \frac{3}{4}

Similar questions