Math, asked by shivanichavan, 1 year ago

if cosA=7/25 Find the value of tanA + cotA​

Answers

Answered by trisha10433
9

cosA=7/25

cos theta =b/h

so 7/25= b/h

applying phythagoras theorem

h^2=b^2+p^2

25^2=7^2+p^2

625-49=p^2

576=p^2

p=√576

p=24

tanA=p/b , cotA=b/p

tanA=24/7 ,cotA=7/24

now, 24/7+7/24

576+49

--------------

168

625

-------

168

Answered by TheInsaneGirl
20

{\underline{\bold{Answer}}}\frac{625}{168}

{\bold{\underline{Step\:by\:Step\:Explanation}}}

 =  > Cos A  =  \frac{7}{25}

We know that :

Cos \:  \theta =  \frac{Base \: (B)}{Hypotenuse  \: (H) }

→ Use the Pythagoras Theorem to find the third side of the triangle :

➡ (H)² = (B)² + (P)²

=> (25)² = (7)² + (P)²

=> 625 = 49 + P²

=> P² = 625 - 49

=> P² = 576

 =  > P =  \sqrt{576}

{ \bold{P = 24 \: cm \: }}

Now ,

Tan A \:  =  \frac{Prependicular \: ( P) }{base \:(B)}

 =  >{ \bold{ Tan A =  \frac{24}{7} }}

Also ,

Cot A  =  \frac{1}{Tan \: A}

 =  > { \bold{Cot \: A =  \frac{7}{24} }}

♦Plug the values of Cot A and Tan A in the given equation ,

→ Tan A + Cot A \:  =  \frac{7}{24}  +  \frac{24}{7}  \\  \\ →  \frac{49 + 576}{168}  \\  \\ →  \frac{625}{168}

Hence we have ,

{ \bold { \boxed {Tan \: A \:  + Cot \: A \:  =  \frac{625}{168} }}} = 3.72 \:( approx.)

Similar questions