if cosA= 7/25 find the value of tanA+cotA
Answers
Answered by
206
hello users ...
solution:-
Given that :
cos A = 7 / 25
we know that ;
sin x = √ (1 - cos²x)
And
tan x = sin x / cos x
And
cot x = cos x / sin x or 1 / tan x
Here,
sin A =√ ( 1 - cos²A)
= √ { 1 - (7/25)² }
= √ ( 1 - 49/625)
= √ { ( 625 - 49 ) / 625 } ... taking LCM ...
= √ 576 / 625
= √ ( 24/25)²
= 24 /25
And
tan A = sin A / cos A
= (24/25 ) / ( 7/25 )
= 24 / 7
And
cot A = 1/ tan A
= 1/ ( 24/7) = 7/24
now,
tan A + cot A = 24 / 7 + 7 / 24
= ( 576 + 49 ) / 168 ....taking LCM ...
= 625 / 168 Answer
# hope it helps :)
solution:-
Given that :
cos A = 7 / 25
we know that ;
sin x = √ (1 - cos²x)
And
tan x = sin x / cos x
And
cot x = cos x / sin x or 1 / tan x
Here,
sin A =√ ( 1 - cos²A)
= √ { 1 - (7/25)² }
= √ ( 1 - 49/625)
= √ { ( 625 - 49 ) / 625 } ... taking LCM ...
= √ 576 / 625
= √ ( 24/25)²
= 24 /25
And
tan A = sin A / cos A
= (24/25 ) / ( 7/25 )
= 24 / 7
And
cot A = 1/ tan A
= 1/ ( 24/7) = 7/24
now,
tan A + cot A = 24 / 7 + 7 / 24
= ( 576 + 49 ) / 168 ....taking LCM ...
= 625 / 168 Answer
# hope it helps :)
Answered by
98
Hope it helps you !
Attachments:
Similar questions