Math, asked by chandurnamrataNC, 1 year ago

if cosA +cos^2 = 1 then find sin^2 + sin^4​

Answers

Answered by ShuchiRecites
6

We are given thag cosA + cos²A = 1.

On solving this equation,

→ cosA + cos²A = 1

→ cosA + 1 - sin²A = 1

cosA = sin²A

Now, we have to find sin²A + sin⁴A.

→ sin²A + sin⁴A

→ sin²A + (sin²A)²

By replacing values,

→ cosA + (cosA)²

→ cosA + cos²A = 1 [As per given]

Hence value of sin²A + sin⁴A is 1.

Answered by GodHelper
2

हमें थग cosA + cos²A = 1 दिया जाता है।

इस समीकरण को हल करने पर,

= cosA + cos [cosA] = 1

= cosA + 1 - sin²A = 1

= कोसा = पाप cos

अब, हमें sin²A + sin weA खोजना होगा।

= sin =) A + sin⁴A

= sin =) A + (sin²A) (

मान बदलकर,

= cosA + (cosA) cos

= cosA + cos cosA = 1 [दिए गए अनुसार]

इसलिए sin +A + sin⁴A का मूल्य 1 है।

Similar questions