Math, asked by Angelina119, 2 days ago

If cosA + cos^2A = 1, then find the value of sin^2A + sin^4A​

Answers

Answered by Teluguwala
35

Question :

 \large \sf If  \: Cos \: A   + Cos^{2} \: A = 1,  \\ \large \sf then \:  find  \: the  \: value  \: of  \:Sin^{2} \: A  + Sin^{4}  \: A

 \:

Solution :

 \bf \: The  \: value  \: of  \:Sin^{2} \: A  + Sin^{4}  \: A  = \red 1

 \:

⇝ \: \sf Cos \: A   + Cos^{2} \: A = 1

⟹   \sf \:Sin^{2} \: A  + Sin^{4}  \: A  \:

⟹  \sf \:(1 - Cos^{2} \: A)  +  (1 - Cos^{2}  \: A) ^{2}

⟹  \sf \:(1 -(1 -  Cos \: A)   \: +   \: (1 -(1 -  Cos \: A) ^{2}

⟹  \sf \: 0+  Cos \: A   \: +   \: (0 +  Cos \: A) ^{2}

 \red{⟹  \sf  \:  Cos \: A   \: +   \: (Cos \: A) ^{2}   = 1}

Hence,

∴ \sf \: The  \: value  \: of  \:Sin^{2} \: A  + Sin^{4}  \: A  = 1

 \:

 \:

Step-by-step Explanation :

Given :-

\sf Cos \: A   + Cos^{2} \: A = 1

 \:

To Find :-

\sf \: The  \: value  \: of  \:Sin^{2} \: A  + Sin^{4}  \: A

 \:

Used Identity :-

 \bf⇢ \: Sin^{2}A + Cos^{2} A = 1 \\ \:  \:  \:  \:  \:  \:  \:  \:  \bf \red{ Sin^{2}A  =  1 - Cos^{2} A }\:  \:  \:  \:  \:  \:  \:  \:  \:  \sf(by \: transposing)

 \:

Explanation :-

Here,

⇝ \:  \sf Cos \: A   + Cos^{2} \: A = 1

⇝  \sf \:Sin^{2} \: A  + Sin^{4}  \: A  \:  =  \: ?

Now,

⟹  \sf \:Sin^{2} \: A  + Sin^{4}  \: A  \:

We know that,

 \bf⟹ \:  Sin^{2}A  =  1 - Cos^{2} A

So,

 ⟹  \sf \:(1 - Cos^{2} \: A)  +  (1 - Cos^{2}  \: A) ^{2}   \:

We can write it as :

⟹  \sf \:(1 -(1 -  Cos \: A)   \: +   \: (1 -(1 -  Cos \: A) ^{2}   \:

And,

⟹  \sf \: 1 -1  +  Cos \: A   \: +   \: (1 -1  +  Cos \: A) ^{2}   \:

⟹  \sf \: 0+  Cos \: A   \: +   \: (0 +  Cos \: A) ^{2}   \:

⟹  \sf  \:  Cos \: A   \: +   \: (Cos \: A) ^{2}

So, according to the question we get,

 \red{⟹ \: \bf Cos \: A   + Cos^{2} \: A = 1 }

 \:

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by brainlysrijanuknown2
29

Step-by-step explanation:

cosA+cos²A=1

cosA=1−cos² A

cosA=sin²A

Hence

sin 4A+sin²A

cos² A+cosA

=1

Similar questions