if cosA +cos^2A=1 then sin^2+sin^4A=?
Answers
Answered by
2
Answer:
Sin²A + Sin⁴A = 1
Step-by-step explanation:
1.
I HOPE IT HELPS U
Attachments:
Answered by
5
★ Answer:-
Sin²A+Sin⁴A=1
★ Concept:-
Here in this question, concept of trigonometry is used. We have given that Cos A+ Cos²A=1 and we have to find value of Sin²A+Sin⁴A. To solve the required problem we can use different trigonometric Identities and put value from 1st equation in the required equation.
So let's start!!
_______________________
★ Identity Used:-
• Sin²A+Cos²A=1
_______________________
★ Solution:-
We have identify:
⇒ Sin²A+Cos²A=1
By arranging it:
⇒Sin²A=1-Cos²A...(1)
_______________________
Now we have given equation:
⇒ Cos A+ Cos²A=1
⇒ Cos A=1-Cos²A...(2)
_______________________
Now:-
Sin²A+Sin⁴A
Taking Sin²A common
Sin²A+Sin⁴A=Sin²A (1+Sin²A)
By putting values from equation (1).
Sin²A+Sin⁴A=1-Cos²A(1+{1-Cos²A})
By putting values from equation (2).
Sin²A+Sin⁴A= Cos A(1+Cos A)
Sin²A+Sin⁴A= CosA+Cos²A
By putting values from given equation:
Sin²A+Sin⁴A=1
∵ Sin²A+Sin⁴A=1.
_______________________
★ More Identities:-
• 1+Tan²A=Sec²A
• Sec²A-Tan²A=1
• 1+Cot²A=Cosec²A
• Cot²A=Cosec²A-1
• Sec²A=1-Cos²A
• Cos²A=1-Sec²A
_______________________
Similar questions